

Installation, Operation and Maintenance Manual

PROVAL A236 Series Smart Valve Positioners

proval

1 INFORMATION FOR THE OPERATOR	3
1.1 CLASSIFICATION OF SAFETY RELATED NOTICES	3
1.2 SAFEY AND CAUTIONS	.4
1.3 USE AS INTENDED	4
1.4 INSTALL AND MAINTAIN OPERATION	. 5
1.5 LIST OF DELIVERY	5
2 SUMMARY	5
2.1 FUNCTIONS	6
2.2 SPECIALTY	6
2.3 INTEGRATED LIGHTNING PROTECTION CIRCUIT	.7
3 TECHNICAL DATA	. 8
4INSTALLATION	.9
4.1 DIMENSIONS	9
4.2 INSTALLATION	.9
50PERATION	20
5.1 INTERFACE DESCRIPTION	20
5.1.1 DISPLAY	20
5.1.2 BUTTONS	20
5.2 CONFIGURATION MODE	21
5.2.1 ENTERING CONFIGURATION MODE	21
5.2.2 CHOOSING A PARAMETER FOR CONFIGURATION	21
5.2.3 CHANGING A PARAMETER	22
5.2.4 RESET USER PARAMETERS	23
5.2.5 EXITING CONFIGURE MODE	23
5.3 INITIALIZATION	23
5.3.1 CHECK BEFORE INITIALIZATION	23
5.3.2 AUTO TUNING	24
5.3.3 MANUAL TUNING	25
5.4 DIAGNOSIS MODE	26
5.4.1 ENTERING DIAGNOSIS MODE	26
5.4.2 EXITING THE DIAGNOSIS MODE	26
5.4.3 THE DIAGNOSTIC PARAMETER	26
5.5 ALARM	27
5.5.1 ZERO POINT OF POSITION SENSOR TOO LOW	27
5.5.2 SPAN POINT OF POSITION SENSOR TOO HIGH	27
5.5.3 INITIALIZATION ERROR	27
5.5.4 MEASUREMENT SPAN IS INSUFFICIENT	27
5.5.5 USER CHARACTERISTICS SETTING ERROR	28
5.5.6 FEEDBACK OVER LIMITS	28

proval

5.5.7 INPUT CURRENT OUT OF WORK RANGE	28
5.5.8 ACTUATOR ERROR	28
6USER PARAMETER	29
6.1 PARAMETER LIST	29
6.2 PARAMETERS	31
7FAULT AND MAINTENANCE	38
7.1 TROUBLE SHOOTING	38
7.2 MAINTENANCE	39
8 TRANSPORTATION AND STORAGE	39
9ORDERING INFORMATION	40
9.1 THE DETAIL PRODUCT MODELS IS IN THE FOLLOWING	40
9.2 FEEDBACK CONNECTION	41

1 Information for the Operator

Please read this manual carefully before starting work!

1.1 Classification of Safety Related Notices

Ensure that you are safe in installing, commissioning and maintaining this instrument. Please pay attention to the warning and notice texts.

A	WARNING
	Potentially hazardous situation!
	Non-observance could result in serious injury!

1.2 Safeyand Cautions

NOTE

1. The design of this equipment meets the advanced safety requirements, and it is safe and effective when the factory is tested out of the factory.

2. This equipment is complied with the relevant rules and standards.

3. The equipment manufacturer reserves the right to modify technical parameters without prior notice.

4. The permitted storage transport and operating temperature must be observed.

5. The equipment must be connected in accordance with the connection diagram in the manual.

6. The information contained in the nameplate wire connection diagram and warning icons attached to the equipment must be followed.

7. There are corresponding marks on the nameplates of equipment used in hazardous areas. When operating equipment in a hazardous area, the relevant rules must be complied with. The installation specifications, connection parameters, and safety instructions provided in the Ex flameproof document must be complied with.

1.3 Use as intended

1.4Install and Maintain Operation

NOTE

1. Installation, commissioning, operation, maintenance and repair of the instrument requires special knowledge and should be performed only by qualified personnel.

2. For installing this instrument, the operator must read the user's manual and comply with the rules.

3. When the instrument is installed, it should be in the state of power off and no external load is overstressed.

4. The instrument must not be modified or repaired unless the user is according to the manual.

5. Repairs that are not described in the supplied operation manual may only be carried out directly by the manufacturer or by the service organization.

6. If the welding operation is carried out near the equipment, the grounding of the welding equipment must not be carried out through this equipment.

1.5List of Delivery

A236 smart valve positioner.

User's manual

Ordered spare parts (Optional)

2Summary

A236 smart valve positioner is a two-wire system instrument. The positioner is a control accessory of pneumatic valve. It is widely used in automatic control systems of petroleum,chemical, electricity, metallurgy, paper and pulp industry and other fields.

A236 smart valve positioner accepts the 4~20mA valve setting analog signal from the control system.

This valve setting value will be converted by an analog to digital converter (ADC) to digital signal then input to CPU. At the same time, instrument gets the actual valve position from location sensors. The two signals are compared by the instrument software so as to control the intake and exhaust of the pneumatic actuator, and drive the valve to reach setpoint (refer to Figure2-1)

A236 smart valve positioned is based on microprocessor technology. It can overcome friction and the imbalance power on the control valve well, and improve the response speed of control valve, which makes the position set rapidly and accurately. It is not only able to completely substitute conventional valve positioner, but also is able to directly access HART network, exchanging information between

control system and positioner.

A236 smart valve positioner is complied with the IEC60079-0:2017Explosive atmospheres - Part 0:Equipment - General requirements and Explosive atmospheres - Part 11: Equipment protection by

intrinsic safety "i". A236 smart valve positioner is complied with Electrical apparatus for use in the

Fig2-1 A236 Valve Positioner Principle

2.1 Functions

Self-adaption function: automatically set the Zero and Span of control valve, and optimize the control parameters to improve the control precision.

Configuration function: valve characteristic curve, action mode, dead band, stroke range, shut-off value, and alarm events.

Self-diagnosis function: show the value of setpoint current, travel time, and dead band.

Fault mode function: fail safe (function open/close) or fail freeze (function hold).

Communication function: HART communication protocol.

Feedback function: 4~20mADC valve position feedback signal, switch valve feedback signal.

2.2 Specialty

Positioning precision: 0.5%F.S.

The operation does not need to open the cover.

Simple and compact design, modular construction

Automatic initialization, automatic diagnosis, dynamic setting of valve characteristic curve

Less components, better anti-vibration performance

Local or remote parameters configuration

Less power and air consumption, less operation cost for customers.

Two-wire supply in 4-20mA standard

The integrated lightning protection module can be selected to reduce the damage probability of the locator due to the surge of lightning

2.3 Integrated lightning protection circuit

With the development of technologies, the smart valve positioner becomes more intelligent with communication bus technology. Therefore, it is inevitable to use a number of highly integrated components, which will depress the performance of overcoming overvoltage, over current and anti-surge. When lightning coming, these components can be easily damaged, which will lead to positioner failure. If the control valve is use for critical process control or on high reliability position, the lightning may cause production out of control or accident because of the sudden failure of the positioner. Normal smart valve positioner is easy to be damaged by lightning. It is dangerous for production activities. In order to solve this problem, A236 has surge protection function by a built-in surge discharge circuit.

NOTE

2. It must be grounded according to relevant standards, when installing the lightning protection positioner.

3 Technical Data

	Supply Air Pressure 0.14~0.7 MPa		
Pneumatic	Valve Leakage	<0.6L / H	
	Air Consumption	<36L / H	
	Air Supply	According to ISO8573-1 Size and density of particulates: Class 4 Oil concentration: Class 4 Dew point: Class 4 or 10K below operating temperature	
	Actuator	Single acting, Double acting	
	Travel Range	Linear: 10~100mm(10-20mm,1:6 transmission ratio is optional); Rotation angle:30~105º	
	Input Current	4~20mADC,Minimum input current:>3.8mA,split range start and end point adjustable	
	Feedback Output	4 \sim 20mA DC	
Input/Output	Digital Input	1 dry contract	
	Digital Output	Electronic switch:2 channel	
	Piezo Valves Switch Time	Average failure free time: >2billion	
	Output Characteristic	Linear, 1:30, 30:1, user defined (20points)	
	Communication	HART	
Display	LCD	2×7 digitals, dimension:22×38mm	
Бізріау	Pressure Gauge	Optional, displaying the in and out pressure	
	Self Tuning	Automatic calibrate the Zero and Span, dead band	
Operate	Self Diagnose	Show the value of input current , travel time, dead band, etc.	
	Manual	3 keys on the front panel	
	Dead Zone	0.1~10%adjustable	
Precision Linearity $\leq \pm 0.5\%$ FS		$\leqslant \pm$ 0.5% FS	
	Hysteresis	≪0.5% FS	
	Ambient Temperature	General type:-(40~80)°C	
	Range	Intrinsic safety: -40~+50°C(T6) /65°C(T5) /80°C(T4)	
Environmont	Relative Humidity	5~95%RH	
Environment	Vibration Resistance	15~150Hz@2g	
	IP Protection Level	IP65 (According to customer needs)	
	Explosion-Proof Type	Exia IIC T4~T6 Ga, Exia D 20 T80/T95/T130	
	Weight	2 .0 kg	
Appearance	Dimension	170×96×92mm	
	Housing Material	Aluminium Die casting	

4 Installation

4.1 Dimensions

Fig 4-1 A236 Dimensional drawing

4.2 Installation

4.2.1 General

Fig. 4-2 shows the positioner feedback indicator and the arrow which indicate the rotating range. The shown position is the middle position of the rotating range. Without initialization, the LCD feedback value should be about 50.0 and the bottom row displays NOINI. The two dotted lines are the limit positions of the feedback rotating range in normal status. The position sensor was adjusted before out of factory.

Fig.4-3 is the image which shows that positioner is mounted on a linear actuator with standard feedback lever. The recommended feedback angle is from 40° to 60° on a linear actuator.

Fig. 4-4 is the image which shows that positioner is mounted on a rotary actuator with standard feedback lever

Fig 4-2

Fig 4-4

Number	QTY	Name	Specification
1	6	Inner-hexagon head screw	M8x12
2	6	Spring washer	D8
3	6	Washer	D8
4	1	Actuator bracket	
5	1	Positioner bracket	
6	2	Inner-hexagon head screw	M6x12
7	2	Spring washer	D6
8	2	Washer	D6
9	1	Feedback bracket	
10	1	Feedback lever	
11	2	Screw with washer and spring washer	M5 x10

4.2.2 Installation on a linear actuator

Note: 1. Optional Modules;

2. If the threaded hole just on the left of the actuator, so the positioner bracket screw in the left of the positioner.

Fig.4-5 Installation on a linear actuator

The positioner mounting on the front of the actuator, with the adjustable connection by the feedback lever and feedback bracket(Fig. 4-5).

The installation steps as followings:

Fix the positioner bracket (Fig. 4-5/5) to the positioner with inner-hexagon head screws(Fig. 4-5/1),

spring washers (Fig. 4-5/2) and washers (Fig. 4-5/3).

Fix the actuator bracket (Fig. 4-5/4) to the actuator with inner-hexagon head screws(Fig. 4-5/1), spring washers (Fig. 4-5/2) and washers (Fig. 4-5/3).

Fix the feedback bracket (Fig. 4-5/9) to the actuator with inner-hexagon head screws(Fig. 4-5/6), spring washers (Fig. 4-5/7) and washers (Fig. 4-5/8).

Fix the feedback lever (Fig. 4-5/10) to the feedback shaft of positioner through fasten screw.

Fix the positioner to the actuator with inner-hexagon head screws(Fig. 4-5/(1)), spring washers (Fig. 4-5/(2)) and washers (Fig. 4-5/(3)).

After installation, please fine-tune the position of the actuator bracket (Fig. 4-5/3) and feedback bracket(Fig. 4-5/3) to make sure that the feedback lever(Fig. 4-5/3) is horizontal when the valve is 50% opened. See the solid line in Fig. 4-5.

For a linear actuator, the travel angle of the feedback lever should be from 40° to 60°. If beyond this range, it will cause significant nonlinearity errors.

Item	QTY	Name	Specification
1	4	Washer	D6
2	4	Spring washer	D6
3	4	Hexagon head screw	M6×10
4	1	Feedback lever	
5	1	Screw	M4×5
6	1	Positioner bracket	
7	2	Actuator bracket	
8	1	Feedback bracket	
9	1	Hexagon head nut	M6
10	4	Hexagon head screw	M5×10
11	4	Spring washer	D5
12	4	Washer	D5
13	4	Hexagon head screw	M5×10
14	4	Spring washer	D5
15	4	Washer	D5

4.2.3 Installation on a rotary actuator

Fig.4-6 Installation on a rotary actuator

The installation steps as followings ((Fig. 4-6):

Fix the positioner bracket (Fig. 4-6/6) to the positioner with hexagon head screw (Fig. 4-6/3), spring washers (Fig. 4-6/2) and washers (Fig. 4-6/1).

Fix the feedback lever (Fig. 4-6/(4)) to the shaft of actuator through hexagon head nut(Fig. 4-6/(5)).

Fix the actuator bracket (Fig.4-6/(7)) to the actuator with hexagon head screw (Fig.4-6/10), spring washers (Fig.4-6/(1)) and washers (Fig.4-6/(2))

Screw in hexagon head nut (Fig.4-6/(9)) to feedback lever (Fig. 4-6/(8)), screw in the feedback lever to the actuator and fasten it with the hexagon head nut (Fig.4-6/(9)).

Put the positioner carefully on the actuator. The pin of the feedback lever (Fig. 4-6/()) should be in the slot of the feedback lever (Fig. 4-6/()). Adjust the height of the positioner, fasten the screw on the pin of the feedback lever (Fig. 4-6/()) and fix the positioner with hexagon head screw(Fig. 4-6/13), spring washers (Fig. 4-6/14) and washers (Fig. 4-6/15). Adjust the rotate angle of the feedback lever to comply to the requirements in §4.2.1.

4.3 Pneumatic Connection

Pneumatic connection is on the right side of the positioner. Positioner provides two kinds of connection type: G1/4 or NPT 1/4 (refer to ordering data). See the specific marks on the housing and choose correct type according to the marks.

Fig 4-7Pneumatic Connection

Installation Steps:

Connect the output of the A236 smart positioner to the input of the actuator according to Fig. 4-7.

WARNING

Junction leakage is strictly prohibited. Use soapy water to inspect air tightness of connection interfaces.

Connect the IN port of the A236 smart positioner to the air source. The compressed air must be

filtered

and regulated by the pressure release valve.

Air requirements:

- 1. Air pressure must be $0.14 \sim 0.7$ MPa, depending on the actuator.
- 2. Air supply should be clean dry air without visible oil steam, oil or other liquids.
- 3. Air supply should be no significant corrosion air, steam and solvents.
- 4. Size and density of particulates is Class 4,Oil concentration is Class 4.
- **5.** The air dew point under work pressure should be at least 10 K lower than positioner working environment temperature.

4.4 Electrical connection

4.4.1 Basic requirements

The electrical connections should be strictly in accordance with the connection diagram, and firmly fixed, and not be loose.

The intrinsically safe positioner must be combined with the associated equipment/intrinsic equipment that has passed the explosion-proof certification to form an intrinsically safe explosion-proof system for use in an explosive atmosphere. The wiring of the system must comply with the requirements of the positioner and the associated equipment/intrinsically safe equipment, and the terminals must not be connected incorrectly.

The standard cable connector of this product is a standard waterproof connector. The outer diameter of the signal cable needs to be \geq 8mm and the connector cover should be locked when installing to avoid the IP protection level of this product. If the user introduces the cable introduction device, it must be used locally. A cable entry device or a blocking device approved by a state-authorized inspection agency that meets the requirements of national standards and has a casing protection rating not less than IP20 can be used in explosive hazardous locations.

Any gas that can corrode the flameproof enclosure is prohibited around the positioner.

Operator in installing commissioning and maintaining, should comply with the manual and the followings:

IEC 61241-11:2005, Electrical apparatus for use in the presence of combustible dust - Part 11: Protection by intrinsic safety 'iD'

IEC 60079-19:2019 Explosive atmospheres - Part 19: Equipment repair, overhaul and reclamation

IEC 60079-14:2013 Explosive atmospheres - Part 14: Electrical installations design, selection and

IEC 60079-17:2013 Explosive atmospheres - Part 17: Electrical installations inspection and

maintenance

IEC 60529-2013 Degrees of protection provided by enclosures (IP Code)

4.4.2 Connectionin Intrinsically safe version

4.4.2.1 Input electrical connection(Fig. 4-8)

Type: Loop Power Supply system Input signal: 4~20mA

The min working current: 3.8mAD.C

Input impedance: 455Ω @20mA (Without HART) 575Ω @20mA (With HART)

Barrier requirement :	Intrinsically safe parameter (1+ ~2-):	
Uo≤28V DC	U _i =28V DC	C _i =18n F
lo≤93mA	l _i =93mA	$L_i \approx 0$
Po≤0.65W	P _i =0.65W	

Non-hazardous AreaHazardous Area zone 0,1 or 2

Fig 4-8Input electrical connection

4.4.2.2 Digital output module electrical connection (Fig.4-9)

Working Voltage: <15.5V DC

Output signal:

Digital feedback module	Output current
Signal status "high"	≥2.1 mA
Signal status "low"	≤1.2 mA

Intrinsically safe parameter $(21 + \sim 22), (31 + \sim 32)$: Barrier requirement : Ui=15.5V DC Ci ≈ 0 Llo<15.5V DC

Cl≈0	U0≤15.5V DC
Li≈0	lo≤25mA
	Po≤96.9mW
	Ci≈0 Li≈0

Hazardous Area zone 0,1 or 2Non-hazardous Area

Fig.4-9 Digital output module electrical connection

4.4.2.3 Analog feedback module electrical connection (Fig.4-10)

Feedback signal type: Two-wire system,4~20mA DC

Temperature influence: ≤ 100 ppm/°C

Working range: 3.6 ~ 20.5 mA DC

Precision: ≤0.1%

Working voltage:12 $\,\sim\,$ 28VDC

Intrinsically safe parameter (11+ ~12-): Ui =28V DC Ci=10nF Ii=93mA Li≈0 Pi=0.65W Barrier requirement : Uo≤28V DC Io≤93mA Po≤0.65W

Hazardous Area zone 0,1 or 2Non-hazardous Area

Fig.4-10 Analog feedback output module electronic connection

4.4.3 Connection in Non-intrinsically safe version

4.4.3.1 Input electrical connection (Fig. 4-11)

Type: Loop Power Supply system Input signal: 4~20mA

The min working current: 3.8mAD.C

Input impedance: 455Ω @20mA (Without HART)

 575Ω @20mA (With HART)

Fig 4-11Input electrical connection..

4.4.3.2 Digital output module electrical connection (Fig.4-12)

Working Voltage: 12~35V DC

Output signal:

Digital feedback module	Output current
Signal status "high"	≥2.1 mA
Signal status "low"	≤1.2 mA

Fig.4-12Digital output module electrical connection

4.4.3.3 Analog feedback module electrical connection (Fig.4-13)

Feedback signal type: Two-wire system,4~20mA DC

Temperature influence: ≤100ppm/℃

Working range: 3.6 ~ 20.5 mA DC

Precision: ≤0.1%

Working voltage:12 $\,\sim\,$ 30VDC

Fig.4-13 Analog feedback output module electronic connection

5 Operation

5.1 Interface description

Fig. 5-1.Operation Interface

5.1.1 Display

The LCD display has two lines.

- In the normal mode:
 - > The 1st line shows the position.
 - The 2nd line from left to right shows "direction of the valve-action", "the state of running", and "the setpoint".
- In the Configuration menu state:
 - > The 1st line shows the parameter value.
 - > The 2nd line from left to right shows "parameter number" and "the parameter

name".

NOTE

If the positioner is operated in ranges with temperatures below -10°C the LCD display becomes sluggish and the display refresh rate is reduced obviously.

5.1.2 Buttons

The positioner has three buttons. Please refer to Fig.5-1:

- Operation mode switch---A/M
- Decrease-----▼
- Increase-----▲

In the normal mode. Press button A/M, sub mode switch between auto control mode,

manual control mode, Position sensor angle check mode.

In manual control mode

• Hold down ▲, valve position increase; at the same time hold down ▼, valve

position increase fast.

• Hold down ▼, valve position decrease; at the same time hold down ▲, valve

position	decrease	fast.
p = =		

	NOTE	
1.	Auto control mode: The 2 nd line of LCD show "A"	
2.	Manual control mode: The 2 nd line of LCD show "M"	
3.	Position sensor angle check mode: The 2 nd line of LCD show " SENS "	

5.2 Configuration mode

5.2.1 Entering configuration mode

In the normal mode, press the button A/M for at least 3 seconds to go into Configuration mode.

5.2.2 Choosing a parameter for configuration

Parametersaregroupedto4differentgroups:P1,P2,P3andP4.

- P1 menu to configure basic parameters, including initialization, show unit, type of actuator, running scope, dead band and etc.
- P2 menu to configure input settings, including direction, split-control, ramp settings,

output settings.

- P3 menu to configure valve relative parameters, including running limit control, running directions.
- P4 menu to configure function module, including safety valve settings, switch function input/output settings, current output settings and etc.

In Configuration mode, the user chooses parameter group from P1, P2, P3 or P4.

Fig.5-2 Choosing a parameter group

Within this parameter group, the user can choose the parameter:

- Press▲, the menu turns forward circularly
- Press ▼, the menu turns forward circularly

Here display the contents of parameters:

Fig.5-3 Configuring a parameter

Two digits in the front of the 2nd line show the parameter index number, letters in the back display the name of parameter.

5.2.3 Changing a parameter

Press the button A/M to enter the parameter configure mode, the parameters on the screen will be blinking; such as

- · For numerical parameters:
 - Press A parameter value will increase. Press the button for longer time, the parameter value increases quickly.
 - ▶ Press ▼, parameter value will decrease. Press the button for longer time, the

parameter value decrease quickly.

- For character parameters:
 - > Press▲, parameter value move forward.
 - ➤ Press ♥, parameter value move reverse.

5.2.4 Reset user parameters

- Choosing the PRST parameter:
- Press the button A/M to enter the parameter configure mode, the parameters on the screen will be blinking.
- Press ▲, LCD shows "STRT" on the 1st line, after 3 seconds, user parameters are reset and exit configure mode.

5.2.5 Exiting configure mode

Press the button A/M, for 3 seconds to exit the configure mode and return to normal

5.3Initialization

When the installation is completed, it must be initialized.

There are two ways to initialize: automatic tuning and manual tuning.

5.3.1Check before initialization

Feedback lever's working angle must ensure correct(refer to chapter 4.2.1).

Check that the pipeline connecting the positioner and actuator is correct.

Connect the air supply, the air supply pressure should meet the on-site operating conditions.

Confirming on-site conditions that allow operation of positioner to perform tuning action.

Into the position sensor angle check mode, the 1st shows the feedback lever angle, press▲

or $\mathbf{\nabla}$ to control the valve movement, when the valve is opened to half, the displayed angle

value is about 0 degrees.

Press \blacktriangle or \lor to control the value to reach the fully open and fully closed position of the value, the positioner should not have an UP or DOWN alarm. The feedback lever should not interfere with other objects.

5.3.2 Auto tuning

1. In normal mode press and hold A/M more than 3 seconds to enter the configuration mode.

P1 confi

2. Press▲, up shows "N0", down shows "INIA"

3. Press function key A/M, the down showing will be blinking, enter the parameter configure state.

4. Press ▲ for more than 3 seconds, up shows "STRT", enter the auto-tuning.

5. Thewholeproceduregoesfrom"STEP1"to"STEP5",andshowsthecurrentstepsont

hedownline.

50.	50.	50.	50.	50.
{} STEP1	{} STEP2	{} STEP3	{} STEP4	{} STEP5

6. After tuning, up show the values of parameters, the down shows the "ED XXXX",

XXXX means the relevant parameters of tuning.

7. Press button A/M to return to normal mode.

NOTE

During the tuning process, press A/M to exit tuning state and enter normal mode.

5.3.3 Manual tuning

1. Positioner is in normal state after power-up. Press and hold A/M for more than 3

seconds to enter the configuration mode.

2. Press ▲ to choose the parameter, till the second row shows "INIM"

3. Press the button A/M, the down line will be blinking , enter the parameter

amending state.

STR 02 INIM

4. Press ▲ for more than 3 seconds, up shows "STRT", then it enter the manual tuning. Down shows "ZERO"

5. Press \blacktriangle or \triangledown to choose the start point.

{} ZERO

6. Press A/M to confirm, At this time the down line shows "SPRN"

7. Press \blacktriangle or \blacktriangledown to choose the end point

8. Press A/M to continue the procedure. The whole procedure is according to the

"STEP1" to "STEP5", and shows the current steps on the down line.

9. After tuning, up shows parameters value; the down shows the "ED XXXX",

XXXX means the relevant tuned parameters.

10. Press button A/M to return the normal state.

5.4 Diagnosis mode

5.4.1 Entering diagnosis mode

In normal mode, press the buttonA/Mand ▲3 seconds to enter the diagnosis mode. Up

line displays the value of parameter; low line displays the name of the parameter.

- Press ▲, the parameter moves forward circularly.
- Press ▼, the parameter moves revise circularly.

5.4.2 Exiting the diagnosis mode

In the state of diagnosis: Press the button A/Mfor 3 seconds to exit the diagnosis mode and return to normal mode.

Parameter		Display	Function	Displayable values	Unit			
	01	CURR	#CURR	Input current	4.00~20.00	mA		
	02	TUP	#TUP#	Travel time up	0~200	S		
	03	TDW	#TDW#	Travel time down	0~200	S		
	04	DBUP	#DBUP	Dead band up	0.1~10.0	%		
	05	DBDW	#DBDW	Dead band down	-0.1~-10.0	%		
	06	PUP	#PUP#	Prediction up	1~100	%		
	07	PDW	#PDW#	Prediction down	1~100	%		
	08	IMUP	#IMUP	Impulse length up	2~200	ms		
	09	IMDW	#IMDW	Impulse length down	2~200	ms		
	10	SSUP	#SSUP	Short step zone up	0.1~100.0	%		
	11	SSDW	#SSDW	Short step zone down	0.1~100.0	%		

5.4.3 The diagnostic parameter

5.5 Alarm

5.5.1 Zero point of position sensor too low

In the sensor angle check mode, if the feedback position value is less than -52.0, the LCD will display "DOWN":

Solution:

Check whether installation of feedback components is accordance with Chap. 4.2.2

Installed on alinearactuatororChap.4.2.3Installedonarotaryactuatorinthismanual.

Fine-tune the installation bracket position

5.5.2 Span point of position sensor too high

In the sensor angle check mode, if the feedback position value is greater than 52.0.

Display:

Solution:

Check whether installation of feedback components is accordance with

Chap.4.2.2Installed on alinearactuatororChap.4.2.3Installedonarotaryactuatorinthismanual.

Fine-tune the installation bracket position

5.5.3 Initialization error

When the positioner tuning, the step 1 is error.

Display:

Solution:

Check the air supply pressure

In manual control mode, check whether the valve can be moved up and down

Check if the pneumatic output have gas

5.5.4 Measurement span is insufficient

When the positioner Initialization, the feedback range is less than 20.0.

Display:

Solution:

Adjust the slider on the control rod components, making the feedback value range greater than 20.0

5.5.5 User characteristics setting error

When the user defines the characteristics profile of the valve, the characteristics is non-monotonic up/down.

Display:

35. 15 speR

Solution:

Re-set the parameters

Check the connection of the positioner and the valve

5.5.6 Feedback over limits

Feedback value is> 110% or<-10%

Display:

120. Fber

Solution:

Check feedback sensor, and if necessary, replace the sensor

Re-initialize the positioner

5.5.7 Input current out of work range

If the input current value is greater than21.6mA (>110%) or less than 3.8 mA (<-10%).

Display:

Solution:

Check the input signal

5.5.8 Actuator error

For some reason, the positioner cannot drive the valve to a specific position.

Display:

Solution:

Cleaning valve

Check the valve connected institutions

6 User Parameter

6.1 Parameter list

ltem	Parameter	Display	Function	Content/Scope	Default	Unit
			P1			
			Automatic initialization:			
01	INIA	#INIA	Not start	NO	NO	
			Start	STRT		
			Manual initialization:			
02	INIM	#INIM	Not start	NO	NO	
			Start	STRT		
03	reserve					
			Type of actuator:			
04	TYPE	#TYPE	Linear actuator /Rotary actuator	LINE	TURN	
				TURN		
05	reserve					
		#DEB		Auto		
06	DEBA	А	Dead band of the controller	0.1 ~10.0	AUTO	%
		DEBA		Auto		
07	DEBA1	1	Dead band of the controller 1	0.1 ~10.0	AUTO	%
			Preset(factory setting)			
	PRST	#PRST	Nothing activated	NO		
08			Start of factory setting after	STRT	NO	
			pressing key for 5s			
			P2	<u> </u>		
			Setpoint direction			
09	SDIR	#SDIR	Rising	RISE	RISE	
			Falling	FALL	TUCE	
10	SPRA	#SPR A	Split range start	0.0~100.0	0.0	%
11	SPRE	#SPRF	Split range end	0.0~100.0	100.0	%
	OFICE	II OI ICE			100.0	70
12	TSUP	#TSUP	Setpoint ramp up	0~400	0	s
13	TSDO	#TSDO	Setpoint ramp down	0~100	0	s
			Satagint function	0.400		
			Valve characteristics linear			
				1.30		
14	SFCT	#SFCT		20.1	LINE	
			21 points freely adjustable			
			21 points freely adjustable			
15	SD00	#CD00				
10	3F00	# 5 F00	Sotopint turning points	0.0~100.0		0/.
25	~ SD20	~ #SD20				70
35	3720	#3F20	D 2			
			F3	0.0~100.0		
36	YA	##YA#		0.0~100.0	0.0	%
			inning			

37	YE	##Ye#	End of manipulated variable limiting	0.0 ~100.0	100.0	%		
			Direction of manipulated variable					
38	YDIR	#YDIR	for display		RISE			
			Rising	RISE				
		#VCD	Failing	FALL				
39	YCDW	W	Value for tight closing, bottom	0.0~ 49.9	0.5	%		
				OFF				
40	YCUP	#YCUP	Value for tight closing, top	50.1~ 100.0	99.5	%		
			standardization of manipulated					
41	YNRM	#YNR	variable		MPOS			
		М	To mechanical travel	MPOS				
			To flow	FLOW				
		1	P4					
			sate position:	055				
	SAFE	#SAFE						
42			Freeze	KEEP	OFF	%		
			Close	CLOSE				
			Settings	0.1~99.9				
			Digit Input functional anable "aafa					
43	BIN	#BIN#	Digit input functions, enable sale	OFF				
			Digit output function:	OFF				
			Fault alarm	FAULT				
	DO1	# D O1#	Fault + Non-auto	FNA				
44			#DO1#	#DO1#	Fault + Non-auto+BIN	FNAB	FAULT	
			Less than setting value I SET					
			Greater than the setting value	HSET				
45	SW1	#SW1#	setting value	0.0 ~ 100.0	0.0	%		
			Digit output function:					
10	DOG		Auto/Manual	A/M	A /N 4			
40	DO2	#DO2#	Less than setting value	LSET	A/M			
			Greater than setting value	HSET				
47	SW2	#SW2#	Setting value	0.0 ~ 100.0	0.0	%		
48	AMIN	#AMI N	Min output current	4.0 ~ 20.0	4.0	mA		
49	AMAX	#AMA X	Max output current	4.0 ~ 20.0	20.0	mA		
50	ADIR	#ADIR	Current output direction	RISE FALL	RISE			
51	PROT	#PRO T	Write protect for HART	ON OFF	OFF			

6.2 Parameters

1) INIA Automatic initialization (Chap.5.3.2 Choosing a parameter for configuration)

By selecting "Strt" and pressing the button \blacktriangle for at least 5 seconds, automatic initialization is started. The initialization process is displayed by "RUN 1" to "RUN 5".

2) INIM Manual initialization (Chap.5.3.3 Changing a parameter)

By selecting "Strt" and pressing the button \blacktriangle for at least 5 seconds, manual initialization is started.

3) Reserve

4) **TYPE** Type of actuator.

The actuator is a linear actuator (LINE) or rotary actuator (TURN).

5) Reserve

6) DEBA Dead band of the controller

At DEBA = AUTO the dead zone in automatic operation is adapted continuously to the requirements of the control circuit. The dead zone is gradually increased on detecting a control oscillation. The reverse adaptation takes place by a time criterion.

In the other discrete settings the fixed value is used for the dead zone.

7) DEBA1 Dead band of the controller 1

When DEBA1 = AUTO, the DEBA1is equal to the DEBA value, which will change according to the operating conditions during the running process. When the valve position changes cause oscillation (such as pipeline leakage), the appropriate increase of the DEBA1 can be alleviated. oscillation.

When DEBA1 has other values, the controller dead zone 1 is a fixed value set.

8) PRST Preset

Establishing the factory setting and resetting the initialization.

NOTE

The positioner must be re-initialized after Preset. All previously determined maintenance parameters are cleared.

9) SDIR Setpoint direction (see Fig.6-1)

The setting of the setpoint direction serves to reverse the direction of action of the setpoint. It is used mainly for the split range mode and in single--acting actuators with the safety position "up".

- 10) SPRA Split range start (see Fig.6-1)
- **11) SPRE** Split range end (see Fig.6-1)

In Menu P2, the parameters "10.SPRA" and "11.SPRE" and "9.SDIR" restrict the active setpoint range. In this way, split range tasks can be done by the following characteristics.

- rising /falling
- falling /rising
- falling /falling
- rising /rising

Fig.6-1 Split range-operation with two positioners

12) TSUP Setpoint ramp UP

And

13) TSDO Setpoint ramp DOWN

The setpoint ramp is effective in automatic operation and limits the speed of alteration of the active setpoint. When switching over from manual operation to automatic the active setpoint is adjusted to the setpoint on the positioner with the setpoint ramp.

This bumpless manual/automatic switchover avoids excessive pressure increases on long pipelines.

In the position TSUP = Auto the slower of the two travel times determined during initialization is used for the setpoint ramp. TSDO is then ineffective.

14) SFCT Setpoint function

Non--linear valve characteristics can be linearized with this function and any flow characteristics simulated in linear valve characteristics.

Four valve characteristics are stored in the positioner

- Linear (14.SFCT = LINE, factory setting)
- equal percentage 1:30(14.SFCT=1:30)
- inverse equal percentage 30:1(14.SFCT=30:1)
- freely adjustable (14.SFCT=FREE)

15) SP00 to 35) SP20 Setpoint turning points

A flow parameter can be assigned to the respective setpoint turning value at an interval of 5 %. These points lead to a polygon chain with 20 straight lines which therefore represents a projection of the valve characteristic.

The setpoint vertex values can only be input at 14.SFCT=FrEE. You may only enter a strictly monotonous characteristic, and two consecutive vertex values must differ by at least 0.2 %.

- 36) YA Manipulated variable limiting start
 - And
- 37) YE Manipulated variable limiting end

38) YDIR Zero position

With this parameter you can assign the zero position of the display to the zero position of the valves and fittings. It also allows you to select the direction of rotation of the sensor shaft (looking at the open housing).

39) YCDW Value for tight closing, bottom

And

40) YCUP Value for tight closing, top

With this function the valve can be driven to the seat with the maximum actuating force of the actuator (continuous contact of the piezo-valves).

The tight closing function can be activated on one side or for both limit positions.

The tight closing function can be activated when the setpoint is below the value set with parameter "YCDO" or above that set with parameter "YCUP".

proval

Using the "YA" and "YE" parameters, you can limit the manipulated variable. This limitation causes two different scaling types, MPOS or FLOW, for the digital display and for the position feedback through the current output. See the figure below.

The MPOS scaling type shows the mechanical position from 0 to 100% between the hard stops of the initialization. The position is not influenced by the "YA" or "YE" parameters. The parameters "YA" and "YE" are shown in the MPOS scale.

The FLOW scale is a scaling from 0 to 100% over the range between the "YA" and "YE" parameters. Over this range, the setpoint w is also always 0 to 100%. This results in a more or less flow-proportional display and position feedback "AO". The flow-proportional display and position feedback" AO " also results from the use of valve characteristics.

In order to calculate the regulation difference, the setpoint in the digital display is also shown to the corresponding scale.

The following uses the example of an 80-mm linear actuator to illustrate the dependence of the stroke on the scaling as well as the parameters "YA" and "YE".

Fig.8-2 Example: YNRM = MPOS with YA = 10 % and YE = 80 %

Fig.8-3 Example: YNRM = FLOW with YA = 10 % and YE = 80 %

42) SAFE Safe position

Only when 43.BIN is set to be ON, Safety valve is effective

If binary input is logic 0, valve will be drive to the position specified by this value.

43) BIN Digit Input functions

Enable or disable "safe position" function.

44) DO1Digit output function 1

When positioner detected set fault, channel 1(DO1) of binary output module state is "high".

45) SW1 DO1 set value

When DO1 = LSET, valve position is less than the SW1, channel 1(DO1) of binary output module state is "high".

When DO1 = HSET, valve position is greater than the SW1, channel 1(DO1) of binary output module state is "high".

46) DO2 Digit output function 2

When positioner detected set fault, channel 2(DO2) of binary output module state is "high"

47) SW2 DO2 set value

When DO2 = LSET, valve position is less than the SW2, channel 2(DO2) of binary output module state is "high".

When DO2 = HSET, valve position is greater than the SW2, channel 2(DO2) of

binary output module state is "high".

48) AMIN Min output current

Min output current for the 0% position.

49) AMAX

Max output current

Max output current for the 100% position.

50) ADIR

Relation between the output current of position feedback module and valve position. There are two choices: rise and fall. When choosing rise, output current will be 4mA when valve position is 0%; output current will be 20mA when valve position is 100%. When choosing fall, the result will be opposite.

51) **PROT**Write protect for HART

When PROT = ON, write parameter is allowed by PC or field communicator with HART protocol.

When PROT = OFF, write parameter is not allowed by PC or field communicator with HART protocol.

7 Fault and Maintenance

7.1 Trouble shooting

When positioner failed, follow these steps to eliminate fault. If you cannot solve the fault according to

steps as	bellow,	please	contact the	sales	representatives	of the	factory.
----------	---------	--------	-------------	-------	-----------------	--------	----------

Fault	Reason	Solution			
Actuator has no action both	Air pressure low	Adjust the pressure of air source to			
Actuator has no action both		actuator pressure.			
	Actuator jammed	Solve problem of actuator jammed			
Actuator daga not mayo ar	Air pressure low	Adjust the pressure of air source to			
Actuator does not move or		actuator pressure.			
	Exit initialization before finish	Re-initialize			
		Check whether the external gas path			
Move frequently	Leakage in air loop	leaks.			
		Increase the value of DEBA1			
		Set larger dead band, larger setpoint			
	User conliguration incorrect	ramp			
	Volume of actuator is too small	Set larger dead band, larger setpoint			
Oscillation		ramp			
		Check the installation of bracket and			
	Return difference is large	feedback connection, re-initialize i			
		need			
		Adjust the pressure of air source to			
	Air pressure low	actuator pressure.			
Valve cannot be fully	initialization data incorrect	Re-initialize			
opened or closed	Position limit is set	Check Menu			
	Tighten closing not set	Set tighten closing function			
	Signal too small(<3.6mA)	Check input signal			
N. Paulas	Electrical connection terminal	T he de terris la company			
No display	screws loose	lighten the terminal screws			
	Main board failed	Change the mainboard			
Exhaust not smooth	The exhaust plug	Cleaning the exhaust			
	Position feedback module failed	Change the module			
No position feedback	No external power, position	Provide 24V power to the module			
current	feedback module not work				
	Polarity reversal of external	Rewire			
	connection				
Feedback current mismatch	Position feedback module failed	Change the module			
actual position	Zero or Span drift	Tune the Zero or Span trimmer of			
	1	module			
Position display on LCD	Actuator travel range mismatch	Manual initialize			
mismatch actual position	the scale				

A WARNING

Do not change any explosion proof device.

7.2 Maintenance

Positioner is an instrument which should be regularly maintained. The air supply of positioner should be kept dry and clean. Regularly exhaust water and pollution of the regulator connecting the positioner in order to keep the positioner normally.

Feedback connection may be loose due to long term work. Check the feedback connection regularly. If loose, tighten at once and decide whether to initialize or not according to valve zero and span position deviation.

In order to see whether the air pressure is normal, keep the pressure gauge clear. Inspection and maintenance of explosion proof parts should according to location laws.

8 Transportation and storage

Check whether the signs are complete before storage, and the packing cases are firm. Finally check the reliability and safety of the bandage.

During transportation, light loading and unloading should be carried out, and the impact and pressure dampness and damage of the machine should be strictly prohibited.

Stored in the temperature was minus -40 \sim 80 $^{\circ}$ C, relative humidity is not more than 75%, no condensation, corrosion instrument does not contain harmful impurities in the air

Place on the surface of the packing box.

9 Ordering Information

9.1 The detail product models is in the following

Code	A236	X	X	Х	Х	X	Х	Х	Х	Х	Х	Х	Х
Indicator	Without 3D Indicator	0											
Control Type	Standard Remote		S R										
Fail Status	Fail Reset Fail Freeze			R F									
Act. Working Type	Linear Rotary				L R								
Actuator Type	Single Act. Double Act.					S D]						
Approvals	Standard Ex ia Ex d						0 1 2						
Communication	Without HART Profibus PA Foundation Filer	ndbus						0 H P F					
Position Feedback	Without 4-20 mA Analog	ue Feedt	back						 0 1				
Limit Monitor	without Electronik Limit	Switch								0			
Electric / Pneumatic Connection	M20x1,5 - G1/4" 1/2" NPT - 1/4"	NPT									0		
Gauge Assembly	Without SS Pressure Gau	ge										0]
Housing Material	Aluminium St. Steel												0

9.2 Feedback connection

Feedback	Bracket	Name	Travel	Model	
connection	Dideket	Indifie	range	Model	
Short+Linear	Standard+Linear	Short+Linear&Standard+Linear	10-35mm	MVP-DBP	
Middle+Linear	Standard+Linear	Middle+Linear&Standard+Linear	20-70mm	MVP-ZBP	
Long+Linear	Standard+Linear	Long+Linear&Standard+Linear	35-130mm	MVP-CBP	
Rotary	Standard+Rotary	Rotary&Standard+Rotary	30-105°	MVP-RBP	
1:6+Linear	Standard+Linear	1:6+Linear&Standard+Linear	10-20mm	MVP-XBP	
Short+Linear	Standard+Stainless steel+Linear	Short +Linear&Standard+Stainless steel+Linear	10-35mm	MVP-DBS	
Middle+Linear	Standard+Stainless steel+Linear	Middle +Linear&Standard+Stainless steel+Linear	20-70mm	MVP-ZBS	
Long+Linear	Standard+Stainless steel+Linear	Long +Linear&Standard+Stainless steel+Linear	35-130mm	MVP-CBS	
Rotary	Standard+Stainless +Rotary	Rotary&Standard+Stainless +Rotary	30-105°	MVP-RBS	
Short+Linear	Strengthen+Stainlesssteel+ Linear	Short +Linear& Strengthen +Stainless steel+Linear	10-35mm	MVP-DCS	
Middle+Linear	Strengthen+Stainlesssteel+ Linear	Middle +Linear& Strengthen +Stainless steel+Linear	20-70mm	MVP-ZCS	
Long+Linear	Strengthen+Stainlesssteel+ Linear	Long +Linear& Strengthen +Stainless steel+Linear	35-130mm	MVP-CCS	

Factory offer sales support, service, inventory and commissioning to our global customers. Please contact to our Istanbul Sales Office if you are a domestic customer.

FACTORY

KOBI O.S.B. 1. Cad. 32. Sok. No:10 Köseler Köyü 41480 Dilovası/Kocaeli TR T +90 262 728 1474 F +90 262 728 1477

SALES OFFICE

H. Bagdatlioglu Plaza S.İlknur Keles Sokak No:7 Kat:1 Kozyatagi Mahallesi Kadikoy / Istanbul TR T +90 216 420 0074 F +90 216 420 0094

For complete list of our products, please visit www.dorukendustri.com or contact us at info@dorukendustri.com

www.dorukendustri.com

All Rights Reserved. We reserve the right to modify or improve the designs or specifications of the products mentioned in this manual at any time without notice. Doruk Endüstri - PROVAL does not assume responsibility for the selection, use or maintenance of any product. Responsibility for proper selection, use and maintenance of any PROVAL product remains solely with the purchaser. ©2023 Doruk Endüstri Ltd.